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Hydrodynamics of thermal granular convection
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A hydrodynamic theory is formulated for buoyancy-driv€thermal”) granular convection, recently pre-
dicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered.
The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurca-
tion, the inelasticity of the collisions being the control parameter. The character of hydrodynamic modes of the
system is discussed. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain
collisions.
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As we know from experience, hot fluid rises. Is the same Here is an outline of the rest of this paper. We will see that
statement true fogranular fluid, where the role of tempera- the hydrodynamic problem of thermal granular convection is
ture is played by fluctuations of the grain velocities? There isully determined bythree scaled parameters: the Froude
strong recent evidence that the answer to this question isumberF, Knudsen numbeK <1, and inelasticity coeffi-
positive. Buoyancy-driven “thermal” granular convection cjentq<1, and by the aspect ratio of the system. The trans-
was first observed in molecular dynaniilD) simulations  |ationally symmetric static steady state of the system plays
of granular gas in two dimensioi$], with no shear or time  {he role of the “simple conducting state” of the Rayleigh-
dependence introduced by the system boundaries. It Waggnarg problem. By employing the Lagrangian mass coordi-
found that thermal granular convection appears via a SUPeHate, we find this steady state analytically. Then, by solving

ggtr:f?oll bI;L:;Cna]‘g?e?l]WltSr;rl)nneIaes\t/li((:jecr?él:as'f(z)? tlﬁZ?riZIberlggutlgf the granular hydrodynamic equations in a square box by a
P ) 9 9 Lattice-Boltzmann method, we observe a supercritical bifur-

convection was recently obtained in experiment with a__ . o o ;
highly fluidized three-dimensional3D) granular flow[2] ~ Ccaton at a critical value of =g, and steady convection at
(see also an earlier woflg]). In these two systenfd,?] the 9~ dc. in qualitative agreement with MD simulation§]
convection is driven by a negative vertical granular tempera@nd experiment2]. We then investigate the dependence of
ture gradient4] that makes this convection similar to the the convection thresholg; onK andF. Our results open the
classical Rayleigh-Beard convectiorf5] and its analogs in Way to a systematic investigation of thermal granular
compressible fluid6—-9]. In the Rayleigh-Beard problem a  convection.
negative temperature gradient is imposed externally. In a LetN>1 identical smooth hard disks with diameteand
granular flow driven from below, it develops spontaneouslymassm move without friction and inelastically collide inside
because of the inelasticity of particle collisiofi<]. a two-dimensional box with lateral dimensiar and height
The phenomenon of “thermal” convection in granular L,. The aspect ratio of the systetn=L,/L,. The gravity
fluids is fascinating, as it gives one more example ofacceleratioryis in the negativey direction. The particles are
similarities/differences between the granular and “classical’driven by a base that is kept at temperatlige For simplic-
fluids [11]. Though basic properties of thermal granular con-ity, the three other walls are assumed elastic. The hydrody-
vection were investigated in the MD simulatioh$], no  namic description deals with coarse-grained fields: the num-
theory exists yet. The objective of the present paper is tder density of graina(r,t), granular temperaturg(r,t) and
formulate such a theory. We will work in the regime where mean velocity of graing(r,t). The governing equations can
the “standard” granular hydrodynamic equations in PI2], be written, in the dilute limit, in the following scaled form:
systematically derivable from kinetic equatidris], are ex-

pected to be accurate. As it has become clear by k8 @+nV-v=0 (1)
this requires(in addition to the strong inequaliti{ <1, see dt '

below, and sufficiently low densitthat particle collisions be

nearly elastic.g<1, whereq=(1-r)/2 is the inelasticity ndv/dt=V-P—Fne, 2

coefficient andr is the normal restitution coefficient. The

nearly elastic limit is motivated by the MD simulatiofig] N dT/dt+nTV-v=

where convection was observed already at very small inelas- N 932

ticities: 4x 10 4<q=<2x10"2. As in the MD simulations K[V (TY2VT)—Rr?T%2]. ©)
[1], we will assume a velocity-independent restitution coef- o : . S
ficient. We will limit ourselves to dilute flomn<<n., where Hereg, is thle ungz\iec_tor along, d/dtis the total derivative,

n is the number density of the grains ang is the close- P=—nTI+2KT™D s the stress tensorD=(1/2)[Vv
packing density. As thermal granular convection does not-(Vv)'] is the rate of deformation tensor, ard=D
necessarily involve clustering, the latter assumption is not- (1/2)tr(D)! is the deviatoric part oD andl is the identity
too restricting. tensor. In the dilute limit the bulk viscosity can be neglected

1063-651X/2002/663)/0303014)/$20.00 65030301-1 ©2002 The American Physical Society



XIAOYI| HE, BARUCH MEERSON, AND GARY DOOLEN

compared to the shear viscosit§2]. In addition, we ne-

glected the small viscous heating term in the heat balance

equation(3). The three scaled parameters entering EZp.
and (3) are the Froude numbéf=mgL, /Ty, the Knudsen
numberK =27"3(dL,(n)) "%, and the collision losses pa-
rameterR=8gK 2. R will be used through the rest of this
paper instead of the inelasticity coefficiemntThe Knudsen

numberK is of order of the ratio of the mean free path of the
grains to the system height. For hydrodynamics to be validm™

we should deman# <1. The units of distance, time, veloc-

ity, density, and temperature in the scaled equationg.are

L,/Tg? Tg% (n), and T, respectively. Finally,(n)

=N/(LyL,) is the average number density of the grains.
The physical meaning of the scaled number«, andR

is clear. The Froude numbeérdetermines the relative role of

the maximum potential energy of grains in the gravity field
and their maximum fluctuation energy supplied by the driv-

ing base. The Knudsen numblérdetermines the efficiency
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of the momentum and energy transport in the system. In the FIG. 1. On_e-dime_nsional static temperat(selid line) and den-
hard-sphere fluid we are working with, the kinematic viscos-Sity (dashed lingprofiles forF=0.1 andR=0.5.

ity and thermal diffusivity are equal to each other, so the )

Prandtl number is equal to 1. The inelastic heat loss numbe#here po is the (as yet unknown pressure at the thermal
R determines the relative role of the inelastic heat losses anasew = 0. Substituting this relation into E¢6), we obtain a

heat conduction.
The boundary conditions arg(x,y=0;t)=1 and a zero

normal heat flux at the rest of the boundaries. Also, we de-

mand zero normal components of the velocity and &fip

linear equation forY (u)=T¥A ),

N=w)Y'=Y' = (RI2)(A=u)Y=0, ®

stres$ conditions at all boundaries. The total number of par-wherex =p,/F and the primes now stand far derivatives.

ticles is conserved,

1 (A 1
ZJ; dxfO dy n(x,y,t)=1. (4)

Therefore, in the hydrodynamic formulation, the problem is = Y(#) by calculatingy =

characterized by, K, andR and the aspect ratid, instead
of the full set of eight parameters, d, g, L, L, g, To, and
N.

The general solution of E@8) is a linear combination of the
Bessel functionsl o[ VR2(\— )] and K[ VRI2(A —u)].
The two arbitrary constants are found from the boundary
conditionsY(u=0)=1 andY’'(u=1)=0. Now we employ
Eq. (7) for ng(n) and determine the Eulerian coordinate
Sedu'/Ing(u"). Demanding that
y(u=1)=1, we find\ (and, thereforep,) which completes
the solution. An example of static temperature and density
profiles is shown in Fig. 1. We found that, &&= 0.1 andR

Translationally symmetric static steady states are de=0-7, the temperature difference between the lower and up-

scribed by the one-dimensional equations considered
many works(see, e.g., Ref.14]):

(nsTs)' +Fng=0 5)

and

(TY21L) —RRET¥2=0 (6)
(primes denote derivative$. In our problem these equations
are complemented by the boundary conditidnéy=0)=1
and T{(y=1)=0 and normalization conditiotfédy ns(y)
=1. A static state is characterized by the scaled numbers
andR. Equationg5) and(6) can be solved by going over to
the Lagrangian mass coordinatéy) = [¥ng(y')dy’ [15]. In
view of Eq.(4), the Lagrangian mass coordingiechanges
between 0 and 1. First, we solve E§) for ng(u),

Po—Fu

T 0

Ng(u)=

iRer plates in the static solution agrees very well with the MD
simulations result§l]. The negative temperature gradient is
clearly seen in Fig. 1. At sufficiently large, a denser and
heavier gas is located on top of the underdense gas. This
destabilizing factor drives convection. The stabilizing factors
are granular viscosity and heat conduction.

We investigated convectivén)stability of the static state
by solving the time-dependent hydrodynamic equatidns
(3) numerically. A lattice-Boltzmann scheme, previously
used to study the classical RayleighrBed convection16],
was employed. The scheme gives accurate results for mod-
erate density variations which was the case in the parameter
range of this study. Like in the MD simulatiofi$], we con-
sidered a square boxx=1. The initial conditions were the
following: a uniform (and equal to ltemperature, zero ve-
locity, and density equal to 1 plus a small sinusoidal pertur-
bation. We fixedF andK and variedR. The presencéab-
sence of convection in the box was measured by computing
(after transients die outhe velocity circulationC=¢v-dl
along the edges of the box. In all cases a zero circulation is
observed at sufficiently smalR, and the flow approaches a
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fIG' 2. Steildy-state hydrodynamic velocity field fer-0.1, FIG. 4. Critical valueR, for the convection onset vs the Knud-
K=0.02, andR=3.6. sen numbeK for F=0.05(circles and 0.1(squares

static steady state. We checked that the density and tempertiien approaches, in an oscillatory way, a constant value cor-
ture profiles of the steady state, obtained in the latticeresponding to a steady convection. We used the growth rates
Boltzmann simulations, agree within 1.5% with the analyticto extrapolate to the critical valueR. for the convection
solutions of Eqs(5) and (6). Convection always develops, onset. We also found that the frequency of the decaying os-
via a supercritical bifurcation, wheR exceeds a critical cillations around the steady convection vanishes at the con-
value R.(F,K). Figure 2 shows steady convection that ap-vection onset.
pears in this system after transients decay. Figure 3 shows The next theoretical step should be the linear stability
the bifurcation diagram. The same type of bifurcatisaper-  analysis of Eqs(1)—(3) around the static solutions, and a
critical bifurcation was observed in the MD simulatiof]. detailed investigation of the hydrodynamic modes of the sys-
We determined the convection onsets and bifurcation diatem. In the spirit of pattern formation thedr¥7], one should
grams for two values of the Froude numbér=0.05 and also study convection in a strip infinite in the lateral direc-
0.1, varying the Knudsen numbgrbetween 0.01 and 0.06. tion, by varying the lateral wave number of the perturbation.
The results of this series of simulations, depicted in Fig. 4,This analysis is presently under way. Similar to compressible
clearly show that the viscosity and heat conducfiboth of  atmospheres in astrophysids], the system hafour collec-
which scale likeK) are stabilizing factors. Also, it can be tive modes. At sufficiently smalK, R, and F two of the
seen that stronger gravity promotes convection as expectedhodes represenslightly damped high-frequency oscilla-
Transient motions in the system were investigated bytory modes. The two other modes are low-frequency modes.
monitoring the maximum value of the hydrodynamic veloc- Our numerical results imply that these low-frequency modes
ity in the system as a function of time. After initial transients should be damped &<R.. At R>R; at least one of the
decay, the dynamics depends on whether one is in the sulbw-frequency modes is unstable, and instability is aperiodic
critical (R<R.) or supercritical R>R;) range. We found on the onset. The absence of overstability apparently results
that, in the supercritical range, the maximum velocity firstfrom the big difference between the frequencies of the fast
increases exponentially with tim@o “overstability”), and  and slow modes of the system, similarly to the “classical”
compressible convectigr—8|.
0.2 ; ; — Observing thermal granular convection in experiment re-
.~ quires several conditions, some of which can be stringent. A
S detailed discussion of these conditions is beyond the scope of
0.15 | * . this paper. However, there is one crucial issue that has to be
discussed. A standard method of fluidization of granular ma-
/7 terials (used, in particular, in experimef2]) is vibration of
C o1t / y the bottom plate. There are two importargcessarycondi-
4 tions for observing thermal granular convection in vibroflu-
¥ idized granular beds. First, the frequency of vibration of the
0.05 | . bottom plate should be much higher than any relevaat-
'.f roscopicfrequency of the granulaiéike the frequency of the

bed oscillations or inverse sound travel tim&econd, the

: vibration amplitude should be less than the mean free path of

0 2 4 6 the granulate near the bottom wall. These conditions guaran-

R tee that there is no direct coupling between the bottom plate

FIG. 3. Velocity circulationC along the edge of the box V8  Vibration and collective granular motion. Additional condi-

measured in hydrodynamic simulatiorfpoints, and the curve tions are those of convection instability. Our theory gives

0.125R—3.186)"? (dashed ling In this exampleF=0.1 and such a conditionR>R(K,F). However, we obtained this

K=0.05. condition (a) in the dilute limitn<n., and(b) for a “ther-

o
2
b
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mal,” rather than vibrating, bottom plate. Limitatiqa) can  shear. A recent example is the longitudinal vortices observed
be severe unless the experiment is done in a 2D geometip experiment on rapid granular flow in a chy2].
(spherical particles rolling on a slightly inclined smooth sur-  To summarize, granular hydrodynamics provide a proper
face and driven by a vibrating wdllL9]). To what extent is language for the problem of thermal granular convection and
limitation (b) severe? A full quantitative answer to this ques-open the way to a systematic investigation of this and related
tion requires solving a similar hydrodynamic problem, butPhenomena.
with a different boundary conditiofi4,20 that mimics the e acknowledge useful discussions with John M. Finn,
vibrating wall more directly. Based on an analogy with otherjerry p. Gollub, Rosa Ranez, and Victor Steinberg. B.M. is
driven granular system1], we expect that the results ob- very grateful to the Center for Nonlinear Studies of Los
tained for the two boundary conditions will not differ too Alamos National Laboratory, where this work started.
much from each other, at least qualitatively. The work was supported in part by the Israel Science Foun-
Finally, it is possible that the concept of “thermal” con- dation administered by the Israel Academy of Sciences and
vection can be applicable to some granular systems driven bumanities.
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