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Hydrodynamics of thermal granular convection
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A hydrodynamic theory is formulated for buoyancy-driven~‘‘thermal’’ ! granular convection, recently pre-
dicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered.
The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurca-
tion, the inelasticity of the collisions being the control parameter. The character of hydrodynamic modes of the
system is discussed. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain
collisions.
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As we know from experience, hot fluid rises. Is the sa
statement true forgranular fluid, where the role of tempera
ture is played by fluctuations of the grain velocities? There
strong recent evidence that the answer to this questio
positive. Buoyancy-driven ‘‘thermal’’ granular convectio
was first observed in molecular dynamic~MD! simulations
of granular gas in two dimensions@1#, with no shear or time
dependence introduced by the system boundaries. It
found that thermal granular convection appears via a su
critical bifurcation, with inelastic collision losses being th
control parameter@1#. Strong evidence for thermal granula
convection was recently obtained in experiment with
highly fluidized three-dimensional~3D! granular flow @2#
~see also an earlier work@3#!. In these two systems@1,2# the
convection is driven by a negative vertical granular tempe
ture gradient@4# that makes this convection similar to th
classical Rayleigh-Be`nard convection@5# and its analogs in
compressible fluid@6–9#. In the Rayleigh-Be`nard problem a
negative temperature gradient is imposed externally. I
granular flow driven from below, it develops spontaneou
because of the inelasticity of particle collisions@10#.

The phenomenon of ‘‘thermal’’ convection in granul
fluids is fascinating, as it gives one more example
similarities/differences between the granular and ‘‘classic
fluids @11#. Though basic properties of thermal granular co
vection were investigated in the MD simulations@1#, no
theory exists yet. The objective of the present paper is
formulate such a theory. We will work in the regime whe
the ‘‘standard’’ granular hydrodynamic equations in 2D@12#,
systematically derivable from kinetic equations@13#, are ex-
pected to be accurate. As it has become clear by now@13#,
this requires~in addition to the strong inequalityK!1, see
below, and sufficiently low density! that particle collisions be
nearly elastic:q!1, whereq5(12r )/2 is the inelasticity
coefficient andr is the normal restitution coefficient. Th
nearly elastic limit is motivated by the MD simulations@1#
where convection was observed already at very small ine
ticities: 431024<q<231022. As in the MD simulations
@1#, we will assume a velocity-independent restitution co
ficient. We will limit ourselves to dilute flow,n!nc , where
n is the number density of the grains andnc is the close-
packing density. As thermal granular convection does
necessarily involve clustering, the latter assumption is
too restricting.
1063-651X/2002/65~3!/030301~4!/$20.00 65 0303
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Here is an outline of the rest of this paper. We will see th
the hydrodynamic problem of thermal granular convection
fully determined by three scaled parameters: the Froud
numberF, Knudsen numberK!1, and inelasticity coeffi-
cient q!1, and by the aspect ratio of the system. The tra
lationally symmetric static steady state of the system pl
the role of the ‘‘simple conducting state’’ of the Rayleigh
Bènard problem. By employing the Lagrangian mass coor
nate, we find this steady state analytically. Then, by solv
the granular hydrodynamic equations in a square box b
Lattice-Boltzmann method, we observe a supercritical bif
cation at a critical value ofq5qc and steady convection a
q.qc , in qualitative agreement with MD simulations@1#
and experiment@2#. We then investigate the dependence
the convection thresholdqc on K andF. Our results open the
way to a systematic investigation of thermal granu
convection.

Let N@1 identical smooth hard disks with diameterd and
massm move without friction and inelastically collide insid
a two-dimensional box with lateral dimensionLx and height
Ly . The aspect ratio of the systemD5Lx /Ly . The gravity
accelerationg is in the negativey direction. The particles are
driven by a base that is kept at temperatureT0. For simplic-
ity, the three other walls are assumed elastic. The hydro
namic description deals with coarse-grained fields: the nu
ber density of grainsn(r ,t), granular temperatureT(r ,t) and
mean velocity of grainsv(r ,t). The governing equations ca
be written, in the dilute limit, in the following scaled form

dn

dt
1n“•v50, ~1!

n dv/dt5“•P2Fney ~2!

n dT/dt1nT“•v5

K@“•~T1/2
“T!2Rn2T3/2#. ~3!

Hereêy is the unit vector alongy, d/dt is the total derivative,
P52nTI1 1

2 KT1/2D̂ is the stress tensor,D5(1/2)@“v
1(“v)T# is the rate of deformation tensor, andD̂5D
2(1/2)tr(D)I is the deviatoric part ofD andI is the identity
tensor. In the dilute limit the bulk viscosity can be neglect
©2002 The American Physical Society01-1
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compared to the shear viscosity@12#. In addition, we ne-
glected the small viscous heating term in the heat bala
equation~3!. The three scaled parameters entering Eqs.~2!
and ~3! are the Froude numberF5mgLy /T0, the Knudsen
numberK52p21/2(dLy^n&)21, and the collision losses pa
rameterR58qK22. R will be used through the rest of thi
paper instead of the inelasticity coefficientq. The Knudsen
numberK is of order of the ratio of the mean free path of t
grains to the system height. For hydrodynamics to be v
we should demandK!1. The units of distance, time, veloc
ity, density, and temperature in the scaled equations areLy ,
Ly /T0

1/2, T0
1/2, ^n&, and T0, respectively. Finally, ^n&

5N/(LxLy) is the average number density of the grains.
The physical meaning of the scaled numbersF, K, andR

is clear. The Froude numberF determines the relative role o
the maximum potential energy of grains in the gravity fie
and their maximum fluctuation energy supplied by the dr
ing base. The Knudsen numberK determines the efficiency
of the momentum and energy transport in the system. In
hard-sphere fluid we are working with, the kinematic visco
ity and thermal diffusivity are equal to each other, so t
Prandtl number is equal to 1. The inelastic heat loss num
R determines the relative role of the inelastic heat losses
heat conduction.

The boundary conditions areT(x,y50,t)51 and a zero
normal heat flux at the rest of the boundaries. Also, we
mand zero normal components of the velocity and slip~no
stress! conditions at all boundaries. The total number of p
ticles is conserved,

1

DE0

D

dxE
0

1

dy n~x,y,t !51. ~4!

Therefore, in the hydrodynamic formulation, the problem
characterized byF, K, andR and the aspect ratioD, instead
of the full set of eight parametersm, d, q, Lx , Ly , g, T0 , and
N.

Translationally symmetric static steady states are
scribed by the one-dimensional equations considered
many works~see, e.g., Ref.@14#!:

~nsTs!81Fns50 ~5!

and

~Ts
1/2Ts8!82Rns

2Ts
3/250 ~6!

~primes denotey derivatives!. In our problem these equation
are complemented by the boundary conditionsTs(y50)51
and Ts8(y51)50 and normalization condition*0

1dy ns(y)
51. A static state is characterized by the scaled numbeF
andR. Equations~5! and~6! can be solved by going over t
the Lagrangian mass coordinatem(y)5*0

yns(y8)dy8 @15#. In
view of Eq. ~4!, the Lagrangian mass coordinatem changes
between 0 and 1. First, we solve Eq.~5! for ns(m),

ns~m!5
p02Fm

Ts~m!
, ~7!
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where p0 is the ~as yet unknown! pressure at the therma
basem50. Substituting this relation into Eq.~6!, we obtain a
linear equation forY(m)[Ts

1/2(m),

~l2m!Y92Y82~R/2!~l2m!Y50, ~8!

wherel5p0 /F and the primes now stand form derivatives.
The general solution of Eq.~8! is a linear combination of the
Bessel functionsI 0@AR/2(l2m)# and K0@AR/2(l2m)#.
The two arbitrary constants are found from the bound
conditionsY(m50)51 andY8(m51)50. Now we employ
Eq. ~7! for ns(m) and determine the Eulerian coordinatey
5y(m) by calculatingy5*0

mdm8/ns(m8). Demanding that
y(m51)51, we findl ~and, therefore,p0) which completes
the solution. An example of static temperature and den
profiles is shown in Fig. 1. We found that, atF50.1 andR
&0.7, the temperature difference between the lower and
per plates in the static solution agrees very well with the M
simulations results@1#. The negative temperature gradient
clearly seen in Fig. 1. At sufficiently largeR, a denser and
heavier gas is located on top of the underdense gas.
destabilizing factor drives convection. The stabilizing facto
are granular viscosity and heat conduction.

We investigated convective~in!stability of the static state
by solving the time-dependent hydrodynamic equations~1!–
~3! numerically. A lattice-Boltzmann scheme, previous
used to study the classical Rayleigh-Be`nard convection@16#,
was employed. The scheme gives accurate results for m
erate density variations which was the case in the param
range of this study. Like in the MD simulations@1#, we con-
sidered a square box:D51. The initial conditions were the
following: a uniform ~and equal to 1! temperature, zero ve
locity, and density equal to 1 plus a small sinusoidal pert
bation. We fixedF and K and variedR. The presence~ab-
sence! of convection in the box was measured by comput
~after transients die out! the velocity circulationC5rv•dl
along the edges of the box. In all cases a zero circulatio
observed at sufficiently smallR, and the flow approaches

FIG. 1. One-dimensional static temperature~solid line! and den-
sity ~dashed line! profiles forF50.1 andR50.5.
1-2



e
ce
tic
,

l
p
o

dia

.
. 4

e
te
b
c
ts
su

rs

cor-
ates

os-
on-

lity
a
ys-

c-
n.

ible

es.
es

dic
ults
ast
l’’

re-
t. A
e of
be
a-

u-
he

h of
ran-
late
i-
es

-

RAPID COMMUNICATIONS

HYDRODYNAMICS OF THERMAL GRANULAR CONVECTION PHYSICAL REVIEW E65 030301~R!
static steady state. We checked that the density and temp
ture profiles of the steady state, obtained in the latti
Boltzmann simulations, agree within 1.5% with the analy
solutions of Eqs.~5! and ~6!. Convection always develops
via a supercritical bifurcation, whenR exceeds a critica
value Rc(F,K). Figure 2 shows steady convection that a
pears in this system after transients decay. Figure 3 sh
the bifurcation diagram. The same type of bifurcation~super-
critical bifurcation! was observed in the MD simulations@1#.

We determined the convection onsets and bifurcation
grams for two values of the Froude number:F50.05 and
0.1, varying the Knudsen numberK between 0.01 and 0.06
The results of this series of simulations, depicted in Fig
clearly show that the viscosity and heat conduction~both of
which scale likeK) are stabilizing factors. Also, it can b
seen that stronger gravity promotes convection as expec

Transient motions in the system were investigated
monitoring the maximum value of the hydrodynamic velo
ity in the system as a function of time. After initial transien
decay, the dynamics depends on whether one is in the
critical (R,Rc) or supercritical (R.Rc) range. We found
that, in the supercritical range, the maximum velocity fi
increases exponentially with time~no ‘‘overstability’’!, and

FIG. 2. Steady-state hydrodynamic velocity field forF50.1,
K50.02, andR53.6.

FIG. 3. Velocity circulationC along the edge of the box vsR
measured in hydrodynamic simulations~points!, and the curve
0.125(R23.186)1/2 ~dashed line!. In this exampleF50.1 and
K50.05.
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then approaches, in an oscillatory way, a constant value
responding to a steady convection. We used the growth r
to extrapolate to the critical valuesRc for the convection
onset. We also found that the frequency of the decaying
cillations around the steady convection vanishes at the c
vection onset.

The next theoretical step should be the linear stabi
analysis of Eqs.~1!–~3! around the static solutions, and
detailed investigation of the hydrodynamic modes of the s
tem. In the spirit of pattern formation theory@17#, one should
also study convection in a strip infinite in the lateral dire
tion, by varying the lateral wave number of the perturbatio
This analysis is presently under way. Similar to compress
atmospheres in astrophysics@18#, the system hasfour collec-
tive modes. At sufficiently smallK, R, and F two of the
modes represent~slightly damped! high-frequency oscilla-
tory modes. The two other modes are low-frequency mod
Our numerical results imply that these low-frequency mod
should be damped atR,Rc . At R.Rc at least one of the
low-frequency modes is unstable, and instability is aperio
on the onset. The absence of overstability apparently res
from the big difference between the frequencies of the f
and slow modes of the system, similarly to the ‘‘classica
compressible convection@6–8#.

Observing thermal granular convection in experiment
quires several conditions, some of which can be stringen
detailed discussion of these conditions is beyond the scop
this paper. However, there is one crucial issue that has to
discussed. A standard method of fluidization of granular m
terials ~used, in particular, in experiment@2#! is vibration of
the bottom plate. There are two importantnecessarycondi-
tions for observing thermal granular convection in vibrofl
idized granular beds. First, the frequency of vibration of t
bottom plate should be much higher than any relevantmac-
roscopicfrequency of the granulate~like the frequency of the
bed oscillations or inverse sound travel time!. Second, the
vibration amplitude should be less than the mean free pat
the granulate near the bottom wall. These conditions gua
tee that there is no direct coupling between the bottom p
vibration and collective granular motion. Additional cond
tions are those of convection instability. Our theory giv
such a condition:R.Rc(K,F). However, we obtained this
condition ~a! in the dilute limit n!nc , and ~b! for a ‘‘ther-

FIG. 4. Critical valueRc for the convection onset vs the Knud
sen numberK for F50.05 ~circles! and 0.1~squares!.
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mal,’’ rather than vibrating, bottom plate. Limitation~a! can
be severe unless the experiment is done in a 2D geom
~spherical particles rolling on a slightly inclined smooth su
face and driven by a vibrating wall@19#!. To what extent is
limitation ~b! severe? A full quantitative answer to this que
tion requires solving a similar hydrodynamic problem, b
with a different boundary condition@14,20# that mimics the
vibrating wall more directly. Based on an analogy with oth
driven granular systems@21#, we expect that the results ob
tained for the two boundary conditions will not differ to
much from each other, at least qualitatively.

Finally, it is possible that the concept of ‘‘thermal’’ con
vection can be applicable to some granular systems drive
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shear. A recent example is the longitudinal vortices obser
in experiment on rapid granular flow in a chute@22#.

To summarize, granular hydrodynamics provide a pro
language for the problem of thermal granular convection a
open the way to a systematic investigation of this and rela
phenomena.
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